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C O N J U G A T E  H E A T  T R A N S F E R  I N  M O V I N G  

F I L A M E N T  B U N D L E S  W I T H  A R B I T R A R Y  B l O T  

N U M B E R S  

V. I. Eliseev and Yu. P. Sovit UDC 536.25 

Ananalysis of heat transfer in a bundle of filaments with arbitrary Biot numbers is carried out based on an 

approximate method proposed in the article. 

When considering heat transfer in filament bundles being formed, the representation of a filament as a 

thermally thin body with a Biot number substantially smaller than unity is one of the basic assumptions [1, 2 ]. 

However, in a number of cases filament diameters can be rather large, and, therefore, the filaments cannot be 

considered thermally thin, and the temperature distribution along the filament cross-section is already 
inhomogeneous. In practice, in these cases, especially when phase transitions take place within the filament, a liquid 

core surrounded by a solidified shell is formed. The problem of inhomogeneity of the parameter distribution over 

the filament cross-section is even more closely related to diffusion processes. It is known that the diffusion 

coefficient in polymeric liquids is about - 1 0 - 5 - 1 0  -7 cm2/sec. In these cases the diffusional Peclet number is 

several orders of magnitude greater than the thermal one, which implies the inhomogeneity of the concentration 

profile in the zone of filament formation. 
Determination of temperature or concentration profiles in a single filament presents no particular problems, 

since the problem allows a rigorous mathematical formulation and can be solved either analytically or numerically. 

When considering heat transfer processes in bundles, it is of critical importance to avoid numerical solutions of 

two-dimensional problems within each of filaments, since this leads to huge computational expenses. Therefore, 

the development of analytical and approximate methods making possible to simplify the formulation of the problem 

and reduce it to systems of one-dimensional equations is of topical interest. The objective of the present work was 

to construct approximate solutions for the thermal (diffusional) problem describing heat (mass) transfer within a 

filament and to incorporate the problem into the general heat (mass) transfer problem of a moving filament bundle. 
I. Construction of Approximate Solution. Let us construct a solution using a semi-infinite band of thickness 

2h as an example. The heat transfer equation can be written as 

9Tf O2Tf 

0~ On 2 
- - = 0 ,  (1) 

= ~/Pef, ~ -- x /h ,  and n -- y/h.  Boundary conditions are expressed as follows: 

= = - B i ( T f s -  Trn ) .  Tf(0, n) Tf0(n),  On n=l (2) 

It is known that at constant Bi and Tin, problem (1)-(2) has a simple analytical solution 

2 
Tf = ~ A k exp ( -  a k ~) cos (akn) + Tin, 

k=l  

(3) 
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where Ak are coefficients and ak are eigenvalues of the problem, which are de termined from the relationship: 

Bi 
sin o k = "~k coS o k . (4) 

In a moving filament bundle,  the temperature  of the filtering flow, which varies both along and across the 

forming zone as the bunch moves, plays the role of temperature Tin. The Blot number  can be considered constant  

on the main portion of motion of filaments in a tube, since hydrodynamic  stabilization of the flow is established 

ra ther  rapidly with low stretching. Therefore ,  we now consider problem (1)-(2) with the variable Tin. 

We will use the mult iparameter  method [3 l, which is used in boundary- layer  theory and makes it possible 

to obtain a solution at arbi t rary  boundary  values, as the basis for construction of an approximate solution. In 

addition, solution (3)-(4) holds at arbi t rary  Bi values; therefore, it is worthwhile to use the form of this solution. 

According to the mult iparameter  method, the solution of equation (1) can be represented  as the dependence Tf(~, 

n) = Tf(~, n; f l ,  f2 . . . .  ), where f i  are form parameters  related to the boundary conditions at  n = 1. In the case under  
consideration, we introduce the function t -- Tf - .f, which satisfies the equation 

Ot O2t 
+ = o .  

O~ On 2 i=1 Oft 
C ) 

Here  f is a function of ~, and form parameters  f i  ffi Oif/O~ i. Due to the linearity of the equation with respect to t, 

the solution can be represented in the form t ffi to + tl + t2, where 

Ot 0 O2 to Oq 02tl Ot 2 02t2 Ot 1 
- - = 0 ,  - - =  - h "  (6)  

O~ On 2 O~ On 2 o~ On 2 Of I 

Restricting ourselves to the first two equations of system (6), we write solutions in the form 

t o =  
k=l 

B0k exp ( -  a~ ~) cos (okn) ,  

1 2 
t 1 + B l k e x p ( - -  cos ( o : ) ,  

k=l 

(7) 

where a k also satisfy condition (4). In order  for the solutions to be valid, one must  satisfy the relationship following 

from boundary condition (2) at n = 1 

1 + - ~ B i  ~ +  B i f =  B i T  m. (8) 

This expression plays the role of an equation for determination of the function f and the form parameter  fl.  At a 

constant Tin, the equations d f/arC~ = 0 and f = T m hold, and the solution for to t ransforms into (3). When T m varies, 

the equation f(0)  = Tin0 plays the role of a boundary condition when solving Eq. (8). 

In order  to estimate the applicability of the method proposed, we consider the following model problem. 

Let T m = ao exp (x~) with a 0 and K being constants. Then  the exact solution of problem (1) with boundary  conditions 

(2) (Tm0(n) = 1) is as follows (x > 0): 

Tf = B [exp (xn) + exp ( -  xn) ] exp (r~) + ~] A k exp ( -  a~ ~) cos (akn) , 
k=l 

where 

B = ao {[exp ( v ~ )  + e x p ( -  v ~ ) ]  Bi + v~ [exp (v~-) - e x p ( -  v ~ ) ] }  - 1 B i ,  
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TABLE 1. Temperature Values Obtained from Analytical and Approximate Solutions 

Bi 

10 

100 

1000 

0.4 

0.8 

1.2 

1.6 

2.0 

0.4 

0.8 

1.2 

1.6 

2.0 

0.4 

0.8 

1.2 

1.6 

2.0 

0.4 

0.8 

1.2 

1.6 

2.0 

Tmea. a. 

1.07 

1.27 

1.67 

2.32 

3.32 

1.18 

1.63 

2.37 

3.52 

5.23 

1.22 

1.72 

2.52 

3.75 

5.59 

1.27 

1.74 

2.55 

3.78 

5.62 

1.03 

1.17 

1.49 

2.02 

2.87 

1.08 

1.42 

2.04 

3.00 

4.46 

l . l l  

1.49 

2.16 

3.19 

4.76 

1.17 

1.52 

2.18 

3.22 

4.79 

1.16 

1.50 

2.06 

2.94 

4.29 

1.41 

2.08 

3.09 

4.61 

6.87 

1.48 

2.21 

3.30 

4.92 

7.33 

1.49 

2.22 

3.32 

4.95 

7.38 

Tmean ap . 
1.11 

1.35 

1.79 

2.50 

3.59 

1.23 

1.69 

2.46 

3.63 

5.40 

1.26 

1.77 

2.59 

3.84 

5.71 

1.26 

1.78 

2.60 

3.86 

5.75 

Ta ap 
1.06 

1.24 

1.59 

2.19 

3.11 

1.13 

1.49 

2.13 

3.12 

4.63 

1.14 

1.54 

2.23 

3.30 

4.90 

1.14 

1.55 

2.24 

3.31 

4.92 

Tsap 
1.20 

1.57 

2.17 

3.11 

4.54 

1.43 

2.10 

3.12 

4.65 

6.93 

1.49 

2.21 

3.30 

4.92 

7.34 

1.49 

2.22 

3.32 

4.95 

7.38 

( sin 2ak] -1 I sin cr k 
A k = 2 1 + W )  [ ak 

[exp (V~) + exp (- v~ ) ] Bi + v~ [exp (v~) - exp (- ~ ) ] B cos ok} 
2 ~ + x  

In the approximate solution we have 

and in this case 

Bok= 2(1 - ao) (1 + - -  
sin 2Crk] -1 sin o" k 

- - ,  B l k = 0  , 

2 Bi ) ( 2 Bi x / 2 Bi exp (Ic~) 
f =  a o 1 - 2 B i + 1 c ( 2  + Si) exp ~-~--~-~) + a 0 2 B i + x ( 2  + Bi)" 

Table 1 presents values of mean temperatures and axial and surface temperatures of plates obtained from 

analytical and approximate solutions (Tmean an, Ta an, and T s an correspond to the analytical solution, and 
Tmean up, Ta up, and T sap correspond to the approximate one). It follows from the table that the values of the 
quantities presented are correspondingly close to each other. Thus, results of calculations show that, based on the 
approximations introduced, the method makes it possible to calculate the internal temperature distribution within 
a filament when the two-dimensional problem (1) is reduced to the one-dimensional one (8). 
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2. Heat  Transfer  in a Bundle of Moving Filaments. Let us consider the problem on heat  t ransfer  in a bundle 

o f  moving filaments. To describe the internal heat transfer in a filament, we will use the equation in the following 
form: 

Per OTf O2Tf 0Tf _ _  _ _ _  + _ _  ( 9 )  

0~ On 2 non ' 

in this case (n - r/rf) 

rf (0, n) = rfo,  

OTf [ 
On n=l = Bi(Tfs Tfl) �9 

(10) 

According to the above, we present the solution of the internal problem (9)-(10) with regard for the two 

approximations as follows: 

Pe r df 2 cr~ ~ / P e f )  ( 1 1 )  Tf = f + T ~ n + E Bk exp (-- J0 (akn),  
k=l 

where Bi ffi 2BiTfo/((Bi 2 + o~)ag l (a / ) ) ;  in this case the func t ion /sa t i s f ies  the equation 

Pe,( 
2 1 + ~ - B i  ~ - + B i f = B i T f l  (12) 

with boundary conditions f(0) = Tn o, and a k is determined from the relationship 

B i  
s l (ol,) = ~ Jo (~ 

In order to perform calculations of heat transfer in filament bundles, we will use the mathematical model 
of filtration flow which we developed in [4, 5 ]. We consider the bundle as either being rather  thick or consisting 

of a number of filamer. ~, which results in screening of immediate boundary conditions. In this case, as has been 

shown in [5 ], when bundles move in a tube, hydrodynamic stabilization is established relatively rapidly, and a 

regime is established in a bundle such that the Nusselt numbers for each of filaments in the bundle can be 

considered as virtually equal up to the very boundary of the bundle. This holds in full measure for heat transfer. 

Therefore, results obtained from the solution of the problem considered can also be used for estimation of mass 

transfer parameters. Thus,  for a hydrodynamically stabilized regime, the heat transfer equation can be simplified 

and written in the form 

_ ] OTfl 
n, Pe ~ = 2 Nu (Tfs - Tfl ) . (13) 

Using expressions (11) and (12) and Eq. (13), one can obtain the following analytical solution of the 

conjugate heat transfer problem: 

rf - A k exp ( -  a~ ~/Per)  + A exp ( -  x~/Pef)  + f ,  
Tf0 - Tri O 2 + Bi 1 

Tfl - Tri O 
Vfl - Tf 0 _  Trio 

- Z A~, exp (- o~ ~/Vef) + A exp ( -  z f / e e O  + I ,  
k=l 

300 



qy 

0.8 

0.6 

a4 

0.2 

0 

\,, 
\ 

\, 

1 2\"\.. 

0.2 0.4 0.6 0.8 I0 

~ '  ~''"~...~. b 
" ~ . . ~ .  

. . . .  

' \ . ~ . . ~  2 
�9 . . . . . . . . .  

O 02 0.4 0.6 0.8 ~-lO" 
Fig. 1. Changes in temperatures of the medium and filaments in an infinitely 

thick bundle (Pe = 100): a: 1) Bi = 0.1, Per = 102 , 2) Bi = 10, Pef-- 104; b: 

1) Bi-- 0.1, Pef = 5- 102; 2) Bi -- 10, Per = 5" 104 . 

T a -  Trio = ~ A k e x p ( - a ~ t / p e f )  + f ,  
Za - T f 0 -  Trio k= 1 

(14) 

f_ 4 Bi 
2 +  Bi 

- -  - - 1  

ak 2 Ak exp ( -  a~ t / P e t )  + x 
k=l 

A exp ( -  z t / P e f ) )  , 

where 

X = ~ - ~ - - ~  B i + n ,  Nu--~-ej, A = - ~ A k ,  
k=l  

2n, Pe Nu 
A k = B k . 

{ 4 (  Per / ~ }  
Pe ~ B i + n .  Nu Pe]  - 

Figure 1 shows changes in the temperature of filaments and the medium along the axis of motion of the 

bundle (solid curves correspond to temperatures obtained from the one-dimensional theory for a thermally thin 

filament). In addition, Fig. la  presents results of calculations at Nu -- 0.35 and Bi = 0.1 and 10. In thiJ case, the 

Peclet number Per for the moving filament was taken to be equal to 102 and 104 respectively, and the Peclet number  

Pe in the interfilament space was taken to be equal to 102. This relationship between the Biot and Peclet numbers 

ensures constancy of the total heat content of the medium and filaments. In the former case, (Bi -- 0.1), the 

temperature curves corresponding to the surface (~fs) and axial (~ra) temperatures of the filaments coincide in the 

scale of the figure with the curve obtained from the one-dimensional theory (~'ID). The same coincidence is observed 
for the curves for the temperature of the medium (the filtration temperature of the medium is shown by dashed 

curves). For Bi = 10, the curves of the surface temperature of the filament (dash-dot curve) and on its axis (dash- 

double dot curve) diverge at the initial instant; in this case, on a certain portion, ~fa has a constant value equal to 

the initial temperature of the filament. The curve of rfs first drops somewhat more steeply than riD, since the heat 

from central areas of the filament does not have time to reach the surface. However, when a certain temperature 

gradient is developed, a regime is established within the filament such that rfa and rfs slowly approach each other. 
The important feature of the presented calculation example is the fact that all the curves converge to one and the 

same value, which is determined from the heat balance condition. This substantiates to some extent the efficiency 

of the method. 
In the following variant illustrated by Fig. lb, we also assumed that Nu = 0.35 and Bi -- 0.I and 10, and 

Pe -- 102. The values of Per were taken to be equal 5.102 and 5" 104, respectively, which also conserves the total 

heat content with a varying Blot number. 
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Fig. 2. Changes  in temperatures  of the medium and fi laments in a bundle:  A: 

a) Bi = 1, Pet = 10a; b) Bi = 10, Per ~ 104; B: a) Bi = 1, Per = 5-103; b) Bi = 

10, Per = 5. l04. Tf, Tfl, ~ x, m 

The  example  p resen ted  also reveals the effect of the Biot n u m b e r  on the heat  t r ans fe r  process with 

conservation of total heat  content. The  character  of variation of the curves is the same as in Fig. la .  At Bi = 0.1, 

all the curves coincide with the corresponding curves obtained from the one-dimensional  theory.  At Bi = 10, 

substantial  divergence takes place for Tfs and  rfa. In this case, if Tfs is close to the equilibrium tempera tu re  by the 

end of the hea t  t r a n s f e r  zone p resen ted ,  the t e m p e r a t u r e  on the  f i lament  axis  is c o m p a r a b l y  fa r  f rom it. 

Nevertheless,  as in the first example,  here all the curves converge on their  equilibrium temperature .  Thus ,  the Biot 

number  affects the character  of behavior  of the curves: the curves converge at small Bi and  diverge at large Bi. The  

relationship between Pe and  Pet affects th~ length of es tabl ishment  of equilibrium and the value of the equilibrium 

temperature .  In particular,  the equilibrium tempera ture  and its es tabl ishment  length increase with Per. 

As is evident from the results, the method proposed can be used for de terminat ion of the t empera ture  

distribution within a f i lament when it moves in a bundle. However, it should be pointed on that  the given method 

can be successfully applied if the neglected terms in the form of form parameters  of higher orders  are  smal ler  than 

the r e t a ined  ones.  When  es t imat ing  the accuracy  of the me thod  for  the n u m b e r  of a p p r o x i m a t i o n s  u n d e r  

consideration,  one should take into account the value of the term Peff2Ot/Of I in Eq. (5), which in the case under  

consideration has the form 7" = Pef(O.fl/O~)/48 in the expression for the tempera ture  Tfs. 

In the examples  presented,  as is shown by calculations, this value is insignificant compared  to Tfs. When 

the values of 7' and  Tfs are  comparable,  an error  is possible, which is natural  for this method and  imposes restrictions 

on its applications. An error  can be induced by a large longitudinal tempera ture  gradient .  However,  it should be 

noted that  heat  and  mass  t ransfer  in fi lament bundles being formed takes place in a ra ther  smooth  manner ;  

therefore,  this approximate  method can be used to solve a number  of problems of practical interest.  

We also carr ied out calculations of the temperatures  of the f i laments and gas in bundles  moving in a tube. 

The  governing parameters  had the following values: the tube radius R t = 0.1 m, the bundle radius R b = 0.05 m, 

the fi lament radius rf = 0.125'  l0 -3  m, the fi lament velocity Uf = 0.3 m/see ,  the number  of f i laments  N = 100, the 

initial f i lament tempera ture  Tf = 290~ the initial gas tempera ture  Tfl = 20~ and the wall t empera tu re  Tw = 20~ 

We considered a model problem with air as the medium, and the material  was assumed to have paramete rs  providing 

the following values of the Blot and Peclet numbers:  Bi = l, Pef = t03; Bi = 10, Per = 104; and  Bi = 10, Per = 5.104. 
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Figure 2 shows curves of temperature variations on the surface (s) and in the center (c) of a filament positioned 

both at the boundary (curves 2) and on the axis (curves 1) of the bundle along the forming zone. The solid curves 

represent the filament temperatures, and the dashed curves correspond to the temperatures of the medium. The 

set of Biot and Peclet numbers in Fig. 2A provides, other parameters being constant, the same initial heat content 

of the filaments in the bundle. The same, but with another initial heat content, is also provided in the variant shown 

in Fig. 2B. 

It is evident from Fig. 2 that the lateral heat removal by the apparatus wall and the dynamics of gas motion 

in the bundle affect substantially the central portion of the bundle. As opposed to an infinitely thick bundle, an 

equilibrium temperature is virtually not observed in this problem. Here we can speak about quasi-equilibrium 

quantities, which for a constant initial heat content, differ from each other depending on the Bi number. In this 

case, with a decreasing Biot number (an increasing thermal conductivity coefficient of the material) the quasi- 

equilibrium temperature at the center of the bundle increases at the same values of the longitudinal coordinate, 

which is due to more intense heat exchange. An increase in the initial heat content of the filaments (see Fig. 2B), 
as is evident also from Fig. 1, results in an increase in the temperatures of the gas and the filaments in the bundle. 

The examples presented correspond to an inhomogeneous initial velocity of the gas in the apparatus, which 

is characteristic for actual devices (the gas velocity in the bundle in the initial cross-section is lower than the mean 

velocity in the apparatus). If one takes constancy of the velocity over the cross-section as an initial distribution, 
and by this means reduces the effect of dynamics on heat transfer (removes gas flows within the bundle), then, as 

has been shown by calculations (not presented here), for the Biot numbers taken in the paper, the quasi-equilibrium 

temperatures on the bundle axis become virtually equal. This characterizes the effect of dynamics on heat transfer 

and points to rather strong thermal blocking of the internal filaments. 

N O T A T I O N  

x, y, Cartesian coordinate system; x, r, cylindrical coordinate system; rr, filament radius; Tf, filament 

temperature; T m, temperature of the medium; Tfl, temperature of the filtration flow; Tq, Tf a, temperature on the 

surface and axis of a filament; Tf0, Tfl0, initial temperature values; n = rf/r A, r A, external radius of a cell in a 
filament bundle; Nu, the Nusselt number; Pe --pcprAUn/2, the Peclet number of the filtration flow; p, medium 

density; cp, specific heat of the medium; 2, thermal conductivity of the medium; Ufl, filtration velocity; Per = 

pfcpfrfUf/3tf, the Peclet number for the filament; pf, material density; Col, specific heat of the material; ~f, thermal 

conductivity in the filament; Uf, filament velocity. 
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